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Hypothesis

Introduction
The human lung is a sensitive organ to ionizing radiation.1 Radi-
ation-induced pulmonary injury (RIPI) could happen not only in 
radiotherapy for chest tumors, but also in practitioners receiving 
long-term low-dose radiation.2 Approximately 35% of lung and 
breast cancer patients would develop RIPI after chest radiation 
therapy.3 RIPI is mainly divided into three stages comprising the 
asymptomatic phase,4 radiation-induced pneumonitis,5 and radia-
tion-induced lung fibrosis.6,7 When the disease progresses to the 
pulmonary fibrosis, this would cause not only irreversible dam-

age to the respiratory system and affect the long-term quality of 
life, but also induce life-threatening respiratory failure.3,7 Hence, 
finding interventions to delay or reverse the development of RIPI 
remains a critical issue in current clinical practice. In particular, 
early therapeutic intervention could significantly improve survival 
in RIPI.

In addition, type II alveolar epithelial cells play an essential 
role in lung injury caused by ionizing radiation.3 Extensive type 
II alveolar epithelial cells would be damaged after radiation stimu-
lated the release of pro-inflammatory cytokines, thus leading to 
aggravated lung inflammation, increased epithelial and endothelial 
cell injury, and enhanced proliferation of interstitial cells and in-
terstitial edema.8

PIEZO1 is a mechanically sensitive ion channel discovered 
in recent years.9 It is expressed in various lung cells accord-
ing to the epithelial cells (bronchus and alveolus) and endothe-
lial cells.10–12 A recent study has found that cyclical hydrostatic 
pressure could trigger an inflammatory response by activating 
the ion channel PIEZO1 in myeloid cells of the lung.13 Similarly, 
in the progress of RIPI, the damaged mechanical characteristics 
of the cellular microenvironment could also be sensed by PI-
EZO1.14
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Abstract
Radiation-induced pulmonary injury (RIPI) is a common adverse reaction when ionizing radiation acts on the lung. Type 
II alveolar epithelial cells participate in the process of RIPI by regulating inflammation, epithelial-mesenchymal transition, 
cellular senescence, etc. The expression of miR-139-5p is inhibited by ionizing radiation, which plays a role in modulating 
radiotherapy resistance in breast cancer tissues. PIEZO1, a mechano-sensitive ion channel, has been found to play an essential 
role in bleomycin-induced lung fibrosis. Moreover, there exist some common mechanisms between bleomycin-induced lung 
fibrosis and RIPI. The stretch changes during RIPI might also regulate PIEZO1 signaling. Furthermore, PIEZO1 is predicted to 
be a downstream target gene of miR-139-5p, and ionizing radiation leads to increased PIEZO1 mRNA and protein expression. 
We hypothesized that miR-139-5p might regulate PIEZO1 expression to modulate radiation-induced injury in type II alveolar 
epithelial cells. Therefore, it is of great practical significance to explore new ways to prevent and treat RIPI and break through 
the existing research bottlenecks for improving the prevention and treatment of RIPI.
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In addition to the change in the activation status of PIEZO1, 
whether there is a change in the PIEZO1 expression during RIPI 
is still unclear.

However, there are many studies confirming the relationship 
between miRNAs and lung injury. In an acute lung injury model, 
miRNA-1246 could mediate lung inflammation and apoptosis 
through NF-κB activation and Wnt/β-catenin inhibition.15 One 
study found that miR-34b-3p, miR-96-5p, and miR-802-5p in 
C57BL/6 mice lung tissue were associated with TGF-β signaling 
after whole chest irradiation.16

Compared with normal bronchial epithelial cells, the miR-139-
5p had a low expression in lung adenocarcinoma cells.17 Further-
more, the expression of miR-139-5p was significantly decreased 
after a single 3-Gy dose of irradiation for 4–8 h in breast cancer 
cells. Reduced miR-139-5p expression was related to radiotherapy 
resistance of breast cancer cells by upregulating the target genes.18 
Several miRNAs predicting databases, such as TargetScanHuman 
7.2,19 miRBase,20,21 and ENCORI,22 also predicted that PIEZO1 
could be the target gene of miR-139-5p (Fig. 1a–c).23 Neverthe-
less, whether the impact of miR-139-5p on radiation-induced inju-
ry in type II alveolar epithelial cells depends on PIEZO1 signaling 
is still unknown.

Hypothesis
We hypothesize that during RIPI, PIEZO1 expression is enhanced 
following reduced expression of miR-139-5p, which would par-
ticipate in the pathogenesis of RIPI in type II alveolar epithelial 
cells. Firstly, PIEZO1 would be predicted to be the target gene of 
miR-139-5p by some miRNAs target gene prediction resources.19 
Previous research has proven that ionizing radiation could inhibit 
the expression of miR-139-5p and upregulate downstream target 
genes related to radiotherapy resistance.18 We thereby assume that 
ionizing radiation could upregulate the expression of PIEZO1 by 
downregulating miR-139-5p. Secondly, it was shown that PIEZO1 
could promote HIF-1α accumulation in myeloid cells to regulate 
innate immunity and bleomycin-induced lung fibrosis.13 Thirdly, 
HIF-1α was involved in the pathogenesis of radiation-induced 
pneumonia.24 Thereby, this would seem reasonable to speculate 
that PIEZO1 could also be activated and aggravate lung inflam-
mation through HIF-1α when type II alveolar epithelial cells were 
exposed to ionizing radiation (Fig. 2).

Statistical analysis
GraphPad software 8.0 (GraphPad Software, Inc., La Jolla, CA, 
USA) was used to perform the statistical analyses. Data were pre-
sented as the mean ± standard deviation (SD). Differences among 
groups were evaluated by a student’s t-test. Each experiment was 
repeated as three independent experiments unless specified. p < 
0.05 was considered to be statistically significant.

Rationale for the hypothesis

RIPI and miR-139-5p
miR-139-5p was initially identified as a tumor suppressor gene in 
breast cancer,25 colorectal cancer,26 prostate cancer,27,28 and blad-
der cancer.29 It was also found to be an effective regulator of the 
radiotherapy response.30,31 After ionizing radiation, the expression 
of miR-139-5p was inhibited in breast cancer cells.18 This led to 
an increased expression of the miR-139-5p target genes related to 
radiotherapy resistance, such as POLQ, TOP1, TOP2A, and MA-

T2A.18 Conversely, miR-139-5p mimics have a strong synergistic 
effect with radiation in vitro and in vivo. Furthermore, miR-139-5p 
could modulate Notch1 signaling, and an overexpression of miR-
139-5p could downregulate the expression of the Notch1 protein 
that could inhibit an epithelial-mesenchymal transition, which 
would be a critical process in the development of RIPI.32 Taken 
together, this evidence would suggest that miR-139-5p might play 
a role in RIPI.

PIEZO1 might be a downstream target gene of miR-139-5p
We chose the TargetScanHuman 7.2,19 miRBase,20,21 and EN-
CORI22 miRNA target predicting resources to search for poten-
tial miR-139-5p target genes related to RIPI. The above three 
databases all predicted that PIEZO1 was possibly a target of 
miR-139-5p, which the intersection of the three databases pre-
dictions had 238 genes (Fig. 1d). Two of the three databases dis-
played a high predictive score in PIEZO1, a target score of 82 in 
miRBase and 99 context++ score percentile in TargetScanHuman 
7.2. More interestingly, the impacts of miR-139-5p and PIEZO1 
expression on the survival of patients with breast cancer were 
contrasting.23 It was shown that a high expression of miR-139-5p 
(Fig. 1e) or low expression of PIEZO1 (Fig. 1f) was related to 
longer survival time in breast cancer patients. The inverse ef-
fects of miR-139-5p and PIEZO1 on the breast cancer prognosis 
were consistent with the prediction that miR-139-5p negatively 
regulated the PIEZO1 expression made by the miRNA target pre-
dicting databases.

PIEZO1 in type II alveolar epithelial cells
As a mechanically sensitive ion channel, PIEZO1 would be cru-
cial for the generation of mechanically gated non-selective cation 
current and would play an important role in the process of me-
chanical transduction.33 Previous studies and data from the Bi-
oGPS database (http://biogps.org/) demonstrated that PIEZO1 
was widely expressed in various kinds of lung (fetal lung and 
lung) cells, such as bronchial epithelial cells, lung endothelial 
cells,12,34 alveolar epithelial cells (types I and II), and so on.10,11 
In the pulmonary endothelial cells, PIEZO1 was related to an-
giogenesis, hydrostatic pressure-induced pulmonary edema, and 
ventilator-induced lung injury.35,36 In the lung myeloid cells, PI-
EZO1 promoted HIF-1α stabilization to trigger inflammation un-
der stress.13 In alveolar epithelial cells, mechanical stress during 
the respiratory cycle activated PIEZO1, consequently causing a 
Ca2+ influx, thereby releasing an alveolar surfactant.37 However, 
there has been no research to prove that the PIEZO1 protein in the 
alveolar epithelial cells could regulate RIPI.

PIEZO1 with RIPI
Radiation-induced lung injury includes acute radiation-induced 
pneumonia and chronic pulmonary fibrosis.5 In the process of 
pulmonary injury caused by ionizing radiation, the structure and 
composition of the extracellular matrix would be damaged, thus 
leading to high levels of stress and strain throughout the lung.14 
PIEZO1 could be activated due to changes in the mechanics of the 
cellular microenvironment.13 Our ongoing study using the rat type 
II alveolar epithelial cells (RLE-6TN) found that a single dose of 
4-Gy radiation after 8 h increased both the mRNA and protein lev-
els of PEIZO1 (Fig. 1g, h). The previous study demonstrated that 
PIEZO1 induced the EDN1 expression through the Ca2+ influx to 
drive the HIF-1α accumulation and inflammation in the lung my-
eloid cells.13 Simultaneously, HIF-1α signaling was found to play 
an essential role in RIPI.5 During RIPI, the type II alveolar epithe-

https://doi.org/10.14218/ERHM.2022.00063
http://biogps.org/


DOI: 10.14218/ERHM.2022.00063  |  Volume 8 Issue 1, March 2023 67

Huang J.Q. et al: miR-139-5p regulates PIEZO1 expression to modulate RIPI Explor Res Hypothesis Med

Fig. 1. PIEZO1 could be a target gene of miR-139-5p, and ionizing radiation would lead to increased PIEZO1 mRNA and protein expression in vitro. A-C, 
The TargetScanHuman 7.2, miRbase, and ENCORI databases predicted that PIEZO1 was a target gene of miR-139-5p. D, 238 genes were intersected in three 
databases predictions. E and F, Kaplan-Meier Plotter31,32 showed that among breast cancer patients, high miR-139-5p expression and low PIEZO1 expres-
sion were associated with longer survival time. The inverse effects of miR-139-5p and PIEZO1 on cancer prognosis were consistent with the prediction that 
PIEZO1 acted as a target of miR-139-5p. G, The expression of PIEZO1 mRNA in the RLE-6TN cells was increased at 8 h after radiation (4-Gy). N = 3 per group 
per time point. H, Representative Western blot images showing that the PIEZO1 protein expression was increased at 8 h after radiation. (The bars represent 
SD. The significance was calculated with the Student’s t-test. *p < 0.05 and ***p < 0.001). RLE-6TN, rat type II alveolar epithelial cells; SD, Standard deviation.
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lial cells could also act as a source of inflammation.3 Therefore, we 
further speculated that PIEZO1 could aggravate lung inflammation 
after radiation by regulating the HIF-1α signaling in type II alveo-
lar epithelial cells.

Verification of the hypothesis and clinical implications
We proposed a novel mechanism whereby miR-139-5p would 
regulate PIEZO1/HIF-1α signaling to modulate ionizing radia-
tion-induced pulmonary injury. PIEZO1 in type II alveolar epi-
thelial cells could act as a potential target in protecting the lung 
from ionizing radiation injury. This hypothesis would be veri-
fied by a series of experiments. Firstly, we would confirm that 
the decreased expression of miR-139-5p would be accompanied 
with an increased PIEZO1 expression after ionizing radiation. 
Secondly, the miRNA/target gene relationship between miR-139-
5p and PIEZO1 would be validated by a series of experiments. 
Thirdly, the roles of miR-139-5p and PIEZO1 in inflammation 
activated by the type II alveolar epithelial cells after radiation 
will be examined. Finally, an investigation would be undertaken 
to examine whether the impact of miR-139-5p on RIPI was de-
pendent on PIEZO1/HIF-1α signaling.

Future directions
We further tend to conduct a study to confirm whether PIEZO1 
could be modulated by miR-139-5p and would explore the specific 
mechanisms through molecular biology experiments.

Conclusions
Ionizing radiation inhibits miR-139-5p expression. PIEZO1 is a 
predicted downstream target of miR-139-5p. After radiation, the 
upregulation of the PIEZO1 expression could aggravate inflam-

mation and promote the development of RIPI in type II alveolar 
epithelial cells. Therefore, well-designed experiments would be 
needed to verify this hypothesis.
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